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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p • E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p • (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ∼100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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Fluctuation-induced electromagnetic forces between neutral 
bodies become more and more important as micromechani-
cal and microfluidic devices enter submicrometre scales. These 

forces are known by several different names, depending on the 
regime in which they operate, including van der Waals, Casimir–
Polder and, more generally, Casimir forces (of which van der Waals 
forces are special cases)1–4. Casimir forces arise from electromag-
netic waves created by quantum and thermal fluctuations5–21. The 
dramatic progress made in the theoretical understanding and 
measurement of Casmir forces over the past ten years may soon 
allow them to be exploited in novel microelectromechanical sys-
tems (MEMS) and microfluidic devices8,22–24.

Experimentally, Casimir forces have been measured with ever 
greater precision25–34 in microstructured geometries that increas-
ingly deviate from the original parallel-plate configuration26. They 
have even been measured in fluids that allow the sign of the force 
to change35. Theoretically, the calculation of Casimir forces was tra-
ditionally limited to planar or near-planar geometries, but recent 
developments have led to a host of new computational meth-
ods capable of modelling arbitrary non-planar geometries with 
high accuracy36–45. This combined experimental and theoretical 
progress has allowed researchers to design geometries and materi-
als that exhibit force phenomena significantly different from the 
well-known attraction between parallel plates. Such advances may 
lead to new regimes of operation for micromechanical devices8,46 
and may also provide new ways to combat unwanted interactions 
such as ‘stiction’ between moving parts. In this Review, we sum-
marize the basic physics of Casimir and van der Waals interac-
tions, discuss recent experimental systems, outline theoretical 
progress and consider some of the latest predictions of this unusual 
force phenomena.

From van der Waals to Casimir forces
Van der Waals forces are a familiar concept from introductory 
physics and chemistry: two neutral particles have fluctuating 
dipole moments resulting from quantum or thermal effects, which, 
for a particle separation of d, lead to a d–6 interaction energy that 
is commonly used, for example, as a long-range attraction term 
when describing the interactions between atoms and molecules1–4. 
Physically, this attraction arises as shown in Fig. 1a; whenever one 
particle acquires a spontaneous dipole moment p1, the resulting 
dipole electric field (black lines) polarizes the adjacent particle to 

The Casimir effect in microstructured geometries
Alejandro W. Rodriguez1,2, Federico Capasso1* and Steven G. Johnson2

In 1948, Hendrik Casimir predicted that a generalized version of van der Waals forces would arise between two metal plates due 
to quantum fluctuations of the electromagnetic field. These forces become significant in micromechanical systems at submi-
crometre scales, such as in the adhesion between movable parts. The Casimir force, through a close connection to classical pho-
tonics, can depend strongly on the shapes and compositions of the objects, stimulating a decades-long search for geometries 
in which the force behaves very differently from the monotonic attractive force first predicted by Casimir. Recent theoretical 
and experimental developments have led to a new understanding of the force in complex microstructured geometries, includ-
ing through recent theoretical predictions of Casimir repulsion between vacuum-separated metals, the stable suspension of 
objects and unusual non-additive and temperature effects, as well as experimental observations of repulsion in fluids, non-
additive forces in nanotrench surfaces and the influence of new material choices.

produce an induced dipole moment p2 ~ d–3 (ref. 4). Assuming 
positive polarizabilities, the direction of the dipole fields means 
that these two dipoles are oriented so as to attract each other, 
with an interaction energy that scales as d–6. This leads to the van 
der Waals ‘dispersion’ force, and similar considerations apply to 
particles with permanent dipole moments that can rotate freely. 
The key to more general considerations of Casimir physics is to 
understand that this d–6 picture of van der Waals forces makes two 
crucial approximations that are not always valid: it employs the 
quasi-static approximation to ignore wave effects, and also ignores 
multiple scattering if there are more than two particles.

The quasi-static approximation assumes that the dipole moment 
p1 polarizes the second particle instantaneously, which is valid if d is 
much smaller than the typical wavelength of the fluctuating fields. 
However, the finite wave propagation speed of light must be taken 
into account when d is much larger than the typical wavelength, as 
shown in Fig. 1b, and it turns out that the resulting Casimir–Polder 
interaction energy asymptotically scales as d–7 for large d (ref. 47). 
More generally, the interaction is not a simple power law between 
these limits, but instead depends on an integral of fluctuations at 
all frequencies scaled by a frequency-dependent polarizability of 
the particles4.

The presence of multiple particles further complicates the situ-
ation because multiple scattering must be considered (Fig. 1b). For 
example, with three particles, the initial dipole p1 will induce polar-
izations p2 and p3 in the other two particles, but p2 will create its 
own field that further modifies p3, and so on. Thus, the interaction 
between multiple particles is generally non-additive, and there is no 
two-body force law that can simply be summed to incorporate all 
interactions. Multiple scattering is negligible for a sufficiently dilute 
gas or for weak polarizabilities4,48, but it becomes very significant 
for interactions between two (or more) solid bodies, which consist 
of many fluctuating dipole moments that all interact in a compli-
cated way through electromagnetic radiation (Fig. 1c). When these 
multiple scattering effects are combined with wave retardation in a 
complete picture, they yield the Casimir force9.

Hendrik Casimir based his prediction on a simplified model 
involving two parallel perfectly conducting plates separated by a 
vacuum. Although the Casimir force arises from electromagnetic 
fluctuations, real photons are not involved. Quantum mechanically, 
these fluctuations can be described in terms of virtual photons of 
energy equal to the zero-point energies of the electromagnetic 
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forces are special cases)1–4. Casimir forces arise from electromag-
netic waves created by quantum and thermal fluctuations5–21. The 
dramatic progress made in the theoretical understanding and 
measurement of Casmir forces over the past ten years may soon 
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tems (MEMS) and microfluidic devices8,22–24.
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ingly deviate from the original parallel-plate configuration26. They 
have even been measured in fluids that allow the sign of the force 
to change35. Theoretically, the calculation of Casimir forces was tra-
ditionally limited to planar or near-planar geometries, but recent 
developments have led to a host of new computational meth-
ods capable of modelling arbitrary non-planar geometries with 
high accuracy36–45. This combined experimental and theoretical 
progress has allowed researchers to design geometries and materi-
als that exhibit force phenomena significantly different from the 
well-known attraction between parallel plates. Such advances may 
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and may also provide new ways to combat unwanted interactions 
such as ‘stiction’ between moving parts. In this Review, we sum-
marize the basic physics of Casimir and van der Waals interac-
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progress and consider some of the latest predictions of this unusual 
force phenomena.
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dipole moments resulting from quantum or thermal effects, which, 
for a particle separation of d, lead to a d–6 interaction energy that 
is commonly used, for example, as a long-range attraction term 
when describing the interactions between atoms and molecules1–4. 
Physically, this attraction arises as shown in Fig. 1a; whenever one 
particle acquires a spontaneous dipole moment p1, the resulting 
dipole electric field (black lines) polarizes the adjacent particle to 
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shown in Fig. 1b, and it turns out that the resulting Casimir–Polder 
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More generally, the interaction is not a simple power law between 
these limits, but instead depends on an integral of fluctuations at 
all frequencies scaled by a frequency-dependent polarizability of 
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The presence of multiple particles further complicates the situ-
ation because multiple scattering must be considered (Fig. 1b). For 
example, with three particles, the initial dipole p1 will induce polar-
izations p2 and p3 in the other two particles, but p2 will create its 
own field that further modifies p3, and so on. Thus, the interaction 
between multiple particles is generally non-additive, and there is no 
two-body force law that can simply be summed to incorporate all 
interactions. Multiple scattering is negligible for a sufficiently dilute 
gas or for weak polarizabilities4,48, but it becomes very significant 
for interactions between two (or more) solid bodies, which consist 
of many fluctuating dipole moments that all interact in a compli-
cated way through electromagnetic radiation (Fig. 1c). When these 
multiple scattering effects are combined with wave retardation in a 
complete picture, they yield the Casimir force9.

Hendrik Casimir based his prediction on a simplified model 
involving two parallel perfectly conducting plates separated by a 
vacuum. Although the Casimir force arises from electromagnetic 
fluctuations, real photons are not involved. Quantum mechanically, 
these fluctuations can be described in terms of virtual photons of 
energy equal to the zero-point energies of the electromagnetic 
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Demonstration of the Casimir Force in the 0.6 to 6 mm Range
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The vacuum stress between closely spaced conducting surfaces, due to the modification of the zero-

point fluctuations of the electromagnetic field, has been conclusively demonstrated. The measurement
employed an electromechanical system based on a torsion pendulum. Agreement with theory at the
level of 5% is obtained. [S0031-9007(96)02025-X]
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One of the most remarkable predictions of quantum
electrodynamics (QED), obtained by Casimir in 1948, is
that two parallel, closely spaced, conducting plates will be
mutually attracted [1]. This attractive force is due to the
exclusion of electromagnetic modes between the plates
(as compared to free space) and has magnitude (per unit
surface area A)

FsadyA ≠
p2

240
h̄c
a4 ≠ 0.016

1
a4 dyn smmd4ycm2, (1)

where a is the plate separation; in principle, a QED effect
can directly influence a macroscopic, classical, apparatus.
In spite of the extensive theoretical attention this effect
has received over the years (see [2,3] for recent reviews),
there has been only one attempt at its measurement. This
measurement, as reported by Sparnaay in 1958, showed
an attractive force “not inconsistent with” the prediction
given by Eq. (1), but with effectively 100% uncertainty
[4]. A closely related effect, the attraction of a neutral
atom to a conducting plate, has been recently measured
[5]; good agreement with theory was found.
The Casimir force is closely related to the van der Waals

attraction between dielectric bodies. Formally, Eq. (1) is
obtained by letting the dielectric constant e in the Lif-
shitz theory [6] approach infinity, which is an appropri-
ate description for a conducting material. However, in
practical terms, the Casimir and van der Waals forces are
quite different; the van der Waals force is always attrac-
tive, whereas the sign of the Casimir force is geometry
dependent. For example, if a thin spherical conducting
shell is cut in half, the two hemispheres will experience
a mutual repulsive force [7]. These points are discussed
in Refs. [2,3]. A number of experimental measurements
of short-range forces between dielectric bodies of various
forms have been performed; see Ref. [2] for a review.
For our measurement of the Casimir force, the conduc-

tors were in the form of a flat plate and a sphere. Our
first attempts at measurements using parallel plates were
unsuccessful; this is because it is very difficult to maintain
parallelism at the requisite accuracy (1025 rad for 1 cm
diameter plates). There is no issue of parallelism when
one plate has a spherical surface; geometrically, the sys-
tem is described by the separation at the point of closest
approach. However, when one plate is spherical, Eq. (1)

must be modified; the force for this geometry is sim-
ply obtained by the use of the so-called proximity force
theorem (PFT) [8], which in the present case reduces to
F ≠ 2pRE where R is the radius of curvature of the
spherical surface, and E is the potential energy per unit
surface area which gives rise to the force of attraction
between flat plates. Thus, the magnitude of the Casimir
force between a sphere and a flat surface is given by

Fcsad ≠ 2pR

√
1
3

p2

240
h̄c
a3

!
. (2)

and the result is independent of the plate area.
There are at least two corrections to the Casimir force.

The first is the effect due to the finite temperature T ¯
300 K; this correction has an illustrious history as dis-
cussed by Schwinger et al. [9]; the thermal corrections
for the Casimir force and van der Waals force are dif-
ferent, and are properly derived for the case of conducting
plates in Refs. [9–11]. Taking the results of Brown and
Maclay [11], the surface energy is given by E ≠ aT00,
where T00 is the (volume) energy density. Using the PFT
and Eq. (20a) of [11], the total magnitude of the Casimir
force is

FT
c sad ≠ Fcsad

µ
1 1

720
p2 fsjd

∂
, (3)

where j ≠ kTayh̄c ≠ 0.126a mm21 at T ≠ 300 K (k is
Boltzmann’s constant) and

fsjd ¯
Ω

sj3y2pdz s3d 2 sj4p2y45d, for j # 1y2 ,
sjy8pdz s3d 2 sp2y720d, for j . 1y2 ,

(4)

where z s3d ≠ 1.202 . . .. It is interesting to note that in
the large a limit, the correction is independent of h̄c and
has the appearance of a classical effect; this is analogous
to the Rayleigh-Jeans limit of the black body spectrum.
The second correction, obtained by Schwinger

et al. [9], is due to the finite conductivity of the plates
(modified by the use of the PFT to the case where one
plate is spherical);

F0
csad ≠ Fcsad

√
1 1

4c
avp

!
, (5)
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Precision measurements and manipulations of Casimir forces
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Stable Casimir equilibria
and quantum trapping
Rongkuo Zhao1*, Lin Li1*, Sui Yang1*, Wei Bao1*, Yang Xia1, Paul Ashby2,
Yuan Wang1, Xiang Zhang1,3†

The Casimir interaction between two parallel metal plates in close proximity is usually thought
of as an attractive interaction. By coating one object with a low–refractive index thin film, we
show that the Casimir interaction between two objects of the same material can be reversed
at short distances and preserved at long distances so that two objects can remain without
contact at a specific distance.With such a stable Casimir equilibrium, we experimentally
demonstrate passive Casimir trapping of an object in the vicinity of another at the nanometer
scale, without requiring any external energy input.This stable Casimir equilibrium and quantum
trapping can be used as a platform for a variety of applications such as contact-free
nanomachines, ultrasensitive force sensors, and nanoscale manipulations.

I
n 1948, Hendrik Casimir predicted that an
attractive force occurs between two parallel,
uncharged, perfectly conducting plates closely
separated in a vacuum; this force has come to
be known as the Casimir force (1). The effect

arises from quantum fluctuation–induced tem-
porary electromagnetic fields between the two
plates (2). Electromagnetic modes between two
plates are discretized so that the total intensity
of fluctuation-induced electromagnetic fields be-
tween the plates is less than that in free space (3).
Thus, the plates are pushed toward each other as
a result of unbalanced electromagnetic pressure
in the confined space (4).
TheCasimir forcebetween twomirror-symmetric

objects of the samematerial has been proven to
be always attractive, monotonically increasing
as the separation decreases independently of
the objects’ shape, local dielectric function, and

environment (5). No stable Casimir equilibria
have been found to exist between electrically
neutral objects composed of the samematerials,
regardless of whether their permittivities are
higher or lower than that of the environment
medium (6).
The attractive nature of the Casimir effect is

detrimental for micro- and nanomechanical sys-
tems, resulting in irreversible adhesion (7–9) and
frictional forces (10, 11) as well as undesired
aggregation of nanoparticles (12). The possi-
bility of repulsive Casimir interactions has thus
prompted researchers to pursue stable Casimir
equilibria. The monotonically repulsive Casimir
force can be achieved by embedding two objects
of different materials in a fluid (13–15).However,
the stable Casimir equilibria remain elusive. In
this work, we address the question of whether
Casimir equilibrium exists, meaning that Casimir

forces can be repulsive at short separation dis-
tances and attractive at long distances.
Stable Casimir equilibria were predicted in

theory by arranging one of the interacting ob-
jects enclosed by another (16, 17) so that the
surrounding repulsive Casimir forces could
shroud the object at the center. This special
topological requirement limits possible applica-
tions and also makes experimental verification
extremely difficult. Because Casimir forces at large
separations aremainly contributed by low electro-
magnetic frequencies and at small separations
by high frequencies, a stable Casimir equilibrium
could be realized if small frequencies contribute
only attractive forces and large frequencies pro-
vide sufficient repulsive forces (18, 19). Owing to
difficulties in weak force measurement in liquid
environments and the strict combination of ma-
terials, no experiment to date has verified this
theoretical prediction, although indirect evidence
has been found in interfacial premelting of ice
(18). Other approaches associated with the design
of specific geometries (20–22) were proposed, but
these methods can produce Casimir equilibrium
only along the axis of symmetry, leaving insta-
bility for displacements in other directions.
Furthermore, although theoretical studies with
exotic materials (23–27) or excited-state atoms
(28) also suggest that it is possible to obtain
stable Casimir equilibria, no experimental evi-
dence has been demonstrated. In this study, we
theoretically propose and experimentally dem-
onstrate that stable Casimir equilibria can be
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Fig. 1. Stable Casimir equilibrium enabled by a low–refractive index
coating layer. (A) By coating a thin layer of Teflon on a gold substrate, a stable
Casimir equilibrium is formed so that a gold nanoplate can be trapped at an
equilibrium position in ethanol. (B) Casimir interaction energy between the gold

nanoplate and the Teflon-coated gold surface.The Casimir force given by the
derivative of the Casimir energy with respect to the distance is repulsive at short
distances and attractive at long distances. (C) Thickness and surface profile of
the gold nanoplate along the dashed line in the inset AFM image of the gold plate.
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Quantum fields: mode expansion
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̂akAk(x, t) + ̂a†
kA*k (x, t)

[ ̂ak, ̂a†
k′ 

] = δkk′ 

̂a = 2−1/2( ̂q + i ̂p)



Quantum vacuum: zero amplitude

̂ak |0⟩ = 0



Amplitude measurements: homodyne detection



Quantum fields: 32 plane waves
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Quantum fields: 64 plane waves
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Quantum fields: 128 plane waves
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Quantum fields: 256 plane waves
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Vacuum noise is organised
̂A = ∑

k
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In the Unruh effect an observer with constant acceleration perceives the quantum vacuum as thermal radiation.
The Unruh effect has been believed to be a pure quantum phenomenon, but here we show theoretically how the
effect arises from the correlation of noise, regardless of whether this noise is quantum or classical. We demonstrate
this idea with a simple experiment on water waves where we see the first indications of a Planck spectrum in the
correlation energy.
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I. INTRODUCTION

Imagine an observer moving through the quantum vacuum
of empty space. In free space, the quantum vacuum is Lorentz
invariant, so a uniformly moving observer would not see any
effect due to motion, but an accelerated observer would. This
is known as the Unruh effect [1] (or Fulling-Davies-Unruh
effect in full [1–3]). An observer with constant acceleration a
is predicted [1] to perceive empty space as thermal radiation
with Unruh temperature,

kBT = h̄a

2πc
, (1)

where c is the speed of light in vacuum, h̄ Planck’s constant
divided by 2π , and kB Boltzmann’s constant.

The Unruh effect and the closely related Bekenstein-
Hawking radiation of black holes [4,5] has been one of the
most important results of theoretical physics of the second
half of the 20th century, hinting of a hidden connection between
three vastly different areas of physics indicated by the constants
appearing in Eq. (1): general relativity (acceleration a versus
c), quantum mechanics (h̄), and thermodynamics (kB). It has
been the benchmark for theories attempting to unify these areas
ever since.

Yet there has been no experimental evidence for the Unruh
effect. The reason becomes evident if one puts numbers
into Unruh’s formula: With h̄ ≈ 10−34Js and c ≈ 3 × 108 m/s
one needs an acceleration of about 1023 m/s2 to reach room
temperature. Three avenues [6] have been suggested for getting
closer to an observation of Unruh radiation: (i) strong-field
acceleration such as in laser plasmas, wake fields, or strongly
accelerated electrons, (ii) cavity QED, and (iii) particle accel-
erators; none have been successful so far.

Here we propose and experimentally demonstrate a clas-
sical analog of the Unruh effect, where h̄ is replaced by the
strength of classical noise and c by the speed of the waves
involved in the effect. In our case (Fig. 1) these are water waves
with c of about 0.2m/s. In this way, the Unruh temperature
of Eq. (1) is boosted such that the Unruh effect becomes
observable. Furthermore, we have solved some fundamental
challenges all Unruh measurements face: how to perform

measurements of the Unruh spectrum in confined, finite space
and in finite time.

Analogs [7] of the Unruh effect have been proposed before:
the use of impurities in Bose-Einstein condensates as accel-
erated particle detectors [8] or of graphene [9] folded into a
Beltrami trumpet [10] that corresponds to an accelerate space.
It was also suggested [11] to employ a quantum simulator
made of cold atoms in an optical lattice to generate a synthetic
Unruh effect in arbitrary dimensions [12]. So far, none of these
ideas, exciting as they are, were experimentally demonstrated.
Connections between the Unruh effect and classical physics
have also been pointed out before [13–16], but not the simple
connection we found.

One advantage of our scheme is its simplicity. Figure 1
illustrates the principal idea; the actual experiment is modified
and described in Sec. III. Imagine a container filled with
water subjected to white noise. The resulting ripples on the
water surface are scanned with a movable laser beam, while
a camera is taking a video of the height of the illuminated
spot [17,18]. The moving spot plays the role of the moving
detector; the water ripples represent the vacuum noise. The
spot should move along the space–time trajectory (Fig. 2) of
an observer with constant relativistic acceleration where c is
replaced by the speed of the water waves. The varying height
of the water ripples are recorded along the trajectory for each
run, and the experiment is repeated many times to get reliable
statistics.

Note that the combination of laser spot and video camera
acts like an amplitude detector, whereas Unruh [1] considered
a particle detector. However, an amplitude detector can, in
principle, replace a particle detector: The particle-number
distribution is tomographically obtainable from amplitude
measurements [19,20]. Note also that in classical physics the
interaction between the detector and the detected physical
object can be made arbitrarily small, in contrast to quantum
physics [19]. It is therefore sufficient to record the ripples
on the surface, but not to interact with them. So instead of
scanning the waves with a laser beam one could simply take a
video of the entire surface and then postselect the data along
the space-time trajectory (Fig. 2). This is what we have done
in our experiment.
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FIG. 1. Principal idea. A container is filled with water subject to
noise creating ripples on the water surface. (Top) A movable mirror
guides a laser beam over the water surface illuminating a sharp spot
recorded by a video camera. (Bottom) Video of the water surface and
space-time diagram of the illuminated spot following the trajectory
of the accelerated observer (Fig. 2).

Note that the space-time trajectory (Fig. 2) must be pro-
cessed with respect to the proper time [21] of the accelerated
observer. Due to relativistic time dilatation [21] this time ticks
exponentially slow when the observer moves with a speed close
to c. In order to perform the spectral analysis for the Planck
spectrum with Unruh temperature, sufficient proper time is
required, during which the observer traverses exponentially
large distances in an exponentially large laboratory time. These
challenges are universal to all observations of the Unruh effect,
but have not been met so far. We have confined the waves in
a container and recorded the trajectory between two nodes
of standing waves that acts as two mirrors. Taking mirror
images of the space-time trajectory saves exponentially large
laboratory space. For reducing the measurement time to the
absolute minimum we have developed a form of Fourier anal-
ysis (Appendix B) where we directly read off the correlations
in the Unruh effect that give the Planck spectrum.

These correlations are modified in an interesting way by the
mirrors. In free space, an accelerated observer gets quantum-
entangled with a partner if such a partner moves on the exact
mirror image of the observer’s trajectory [22,23]. Whenever

FIG. 2. Space-time diagram. The accelerated observer follows a
hyperbola (curve) in space time. The observer comes in from ∞ with
asymptotically −c, gets slower due to the acceleration in positive
direction until coming to rest for a fleeting moment at z = ξ , and
changing direction. Then the observer gains speed, asymptotically
approaching +c at ∞. The dotted lines indicate the causal cones
straddled by the accelerated observer. The trajectory obeys Rindler’s
formula, Eq. (2), for constant ξ .

the first observer records the click of a particle detector, so
does the partner (assuming perfect detection efficiency). If the
two paired observers use amplitude detectors, they record the
two-mode squeezing [23] of Gaussian noise (Appendix A). In
our case (Fig. 1) the boundary of the container acts like a mirror
reflecting a hypothetical partner back onto the trajectory of the
observer, which turns out to create single-mode squeezing of
noise [23], an effect we have clearly observed experimentally.

Here, the noise for the real part of the Fourier components
of the observed amplitudes is reduced, while the noise for the
imaginary part is enhanced. The total excess noise follows a
Planck spectrum with Unruh temperature [Eq. (1)]. It has been
noticed before [24] that a mirror does not affect the thermal
spectrum of the quantum Unruh effect, which was perceived as
a paradox, because the mirror prevents the accelerated observer
from getting entangled with unobserved parts of the quantum
field. Where else would the excess entropy come from? In this
paper we have found and demonstrated a mechanism for the
accumulation of noise: single-mode squeezing.

Our findings suggest that at the heart of the Unruh effect
lies the correlation of wave noise, regardless whether these
waves are quantum or classical. Figure 1 (bottom) illustrates
this idea. The figure shows the space-time diagram of water
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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Figure 1 | Relationship between van der Waals, Casimir–Polder and Casimir forces, whose origins lie in the quantum fluctuations of dipoles.  
a, A fluctuating dipole p1 induces a fluctuating electromagnetic dipole field, which in turn induces a fluctuating dipole p2 on a nearby particle, leading to van 
der Waals forces between the particles. b, When the particle spacing is large, retardation/wave effects modify the interaction, leading to Casimir–Polder 
forces. When more than two particles interact, the non-additive field interactions lead to a breakdown of the pairwise force laws. c, In situations consisting 
of macroscopic bodies, the interaction between the many fluctuating dipoles present within the bodies leads to Casimir forces.
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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forces. When more than two particles interact, the non-additive field interactions lead to a breakdown of the pairwise force laws. c, In situations consisting 
of macroscopic bodies, the interaction between the many fluctuating dipoles present within the bodies leads to Casimir forces.
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic field modes to the zero-point energy (U) of the parallel 
plate configuration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. The force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the fluctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic fluctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coefficient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). The 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
The particle can be thought of as a fluctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic fields that propagate outwards, scatter off the body and 
then return to the location of the particle, producing a total field 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the field E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is finite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). This energy must 
be integrated over fluctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the effects of thermal fluctuations at 
non-zero temperatures. The key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. This has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered fields from each body is rarely accurate. Finally, the 
scattered field E is a rapidly oscillating function of ω because of 
interference effects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
The pioneering experiments of Spaarnay49 were not able to unam-
biguously confirm the existence of the Casimir force because of 
(among other factors) the large error arising from the difficulty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). Three important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential difference between the two surfaces (V0) that arises 
from the presence of different metals in the electrical circuit con-
necting the two surfaces, different work functions between the 
thin films and other electrostatic effects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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Quantum noise in time-dependent media and cosmic expansion
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In spatially uniform, but time-dependent dielectric media with equal electric and magnetic response, classical
electromagnetic waves propagate exactly like in empty, flat space with transformed time, called conformal time,
and so do quantum fluctuations. In empty, flat space the renormalized vacuum energy is exactly zero, but not
in time-dependent media, as we show in this paper. This is because renormalization is local and causal, and
so cannot compensate fully for the transformation to conformal time. The expanding universe appears as such
a medium to the electromagnetic field. We show that the vacuum energy during cosmic expansion effectively
reduces the weights of radiation and matter by characteristic factors. This quantum buoyancy naturally resolves
the Hubble tension, the discrepancy between the measured and the inferred Hubble constant, and it might resolve
other cosmological tensions as well.
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I. INTRODUCTION

Imagine a dielectric medium with time-dependent elec-
tric permittivity ε and magnetic permeability µ. Suppose the
medium is made of a spatially uniform, infinitely extended
block of material with

ε = µ = n(t ). (1)

Note that n(t ) describes the refractive index [1], as n = √
εµ.

Consider, in this medium, the quantum fluctuations of the
electromagnetic field [2–4] (Fig. 1). What is their energy den-
sity? What is their gravitational force? Could they influence
the expansion of the universe, and if so, how? These are the
questions of this paper. As in analogues of gravity [5–11] they
aim at cosmological problems, but are grounded in condensed
matter physics, and they do have answers.

Let us explain step by step. From the wave equation of the
electromagnetic vector potential A in Coulomb gauge [1,12],
c2∇ × (µ−1∇ × A) + ∂tε ∂t A = 0, follows that A satisfies
the free–space equation c2∇ × (∇ × A) + ∂2

τ A = 0 with the
transformed time

τ =
∫

dt
n

. (2)

So, like in transformation optics [13–15] the medium of
Eq. (1) performs a coordinate transformation of empty space
for electromagnetic fields. Similar media have been proposed
[16] and experimentally demonstrated [17,18] as temporal
cloaking devices, or “history editors,” and time-dependent di-
electrics have attracted considerable recent attention [19–21].

Artificial materials with the properties of Eq. (1) are still
difficult to manufacture [22], but one of them occurs in nature:
the “material” of space (Appendix). Averaged over cosmolog-
ical distances (>100 Mpc) space appears uniform [23] and
flat [24] while expanding with scale factor a(t ). Distances

*Contact author: ziv.landau.levy@gmail.com
†Contact author: ulf.leonhardt@weizmann.ac.il

measured in wavelengths of electromagnetic radiation grow
with the factor a (Fig. 1) as if the wavelength is reduced by
the refractive index

n = a(t ). (3)

The electric and the magnetic response of space are the
same, and so [25], for the electromagnetic field, the scale
factor acts like the refractive index of the spatially uniform,
time–dependent medium of Eqs. (1) and (3). Moreover, this

FIG. 1. Visualization of quantum noise. Space-time diagram of
Gaussian noise in the medium of the expanding universe (for t from
0 to the present time, with the actual cosmic parameters, Sec. IV C).
Plot of 64 normalized modes summed up with Gaussian random
complex amplitudes. One sees how the wavelength changes due to
expansion or, equivalently, the time evolution of the medium.
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